
10

Indexing

Many large-scale computing applications are centered around datasets that are too
large to fit into main memory. The classic example is a large database of records
with multiple search keys, requiring the ability to insert, delete, and search for
records. Hashing provides outstanding performance for such situations, but only
in the limited case in which all searches are of the form “find the record with key
value K.” Unfortunately, many applications require more general search capabili-
ties. One example is a range query search for all records whose key lies within some
range. Other queries might involve visiting all records in order of their key value,
or finding the record with the greatest key value. Hash tables are not organized to
support any of these queries efficiently.

This chapter introduces file structures used to organize a large collection of
records stored on disk. Such file structures support efficient insertion, deletion, and
search operations, for exact-match queries, range queries, and largest/smallest key
value searches.

Before discussing such file structures, we must become familiar with some ba-
sic file-processing terminology. An entry-sequenced file stores records in the order
that they were added to the file. Entry-sequenced files are the disk-based equivalent
to an unsorted list and so do not support efficient search. The natural solution is to
sort the records by order of the search key. However, a typical database, such as a
collection of employee or customer records maintained by a business, might con-
tain multiple search keys. To answer a question about a particular customer might
require a search on the name of the customer. Businesses often wish to sort and
output the records by zip code order for a bulk mailing. Government paperwork
might require the ability to search by Social Security number. Thus, there might
not be a single “correct” order in which to store the records.

Indexing is the process of associating a key with the location of a correspond-
ing data record. Section 8.5 discussed the concept of a key sort, in which an index

357

358 Chap. 10 Indexing

file is created whose records consist of key/pointer pairs. Here, each key is asso-
ciated with a pointer to a complete record in the main database file. The index file
could be sorted or organized using a tree structure, thereby imposing a logical or-
der on the records without physically rearranging them. One database might have
several associated index files, each supporting efficient access through a different
key field.

Each record of a database normally has a unique identifier, called the primary
key. For example, the primary key for a set of personnel records might be the
Social Security number or ID number for the individual. Unfortunately, the ID
number is generally an inconvenient value on which to perform a search because
the searcher is unlikely to know it. Instead, the searcher might know the desired
employee’s name. Alternatively, the searcher might be interested in finding all
employees whose salary is in a certain range. If these are typical search requests
to the database, then the name and salary fields deserve separate indices. However,
key values in the name and salary indices are not likely to be unique.

A key field such as salary, where a particular key value might be duplicated in
multiple records, is called a secondary key. Most searches are performed using a
secondary key. The secondary key index (or more simply, secondary index) will
associate a secondary key value with the primary key of each record having that
secondary key value. At this point, the full database might be searched directly
for the record with that primary key, or there might be a primary key index (or
primary index) that relates each primary key value with a pointer to the actual
record on disk. In the latter case, only the primary index provides the location of
the actual record on disk, while the secondary indices refer to the primary index.

Indexing is an important technique for organizing large databases, and many
indexing methods have been developed. Direct access through hashing is discussed
in Section 9.4. A simple list sorted by key value can also serve as an index to the
record file. Indexing disk files by sorted lists are discussed in the following section.
Unfortunately, a sorted list does not perform well for insert and delete operations.

A third approach to indexing is the tree index. Trees are typically used to or-
ganize large databases that must support record insertion, deletion, and key range
searches. Section 10.2 briefly describes ISAM, a tentative step toward solving the
problem of storing a large database that must support insertion and deletion of
records. Its shortcomings help to illustrate the value of tree indexing techniques.
Section 10.3 introduces the basic issues related to tree indexing. Section 10.4 in-
troduces the 2-3 tree, a balanced tree structure that is a simple form of the B-tree
covered in Section 10.5. B-trees are the most widely used indexing method for
large disk-based databases, and many variations have been invented. Section 10.5

Sec. 10.1 Linear Indexing 359

Linear Index

Database Records

42 73 985237

52 98 37 4273

Figure 10.1 Linear indexing for variable-length records. Each record in the
index file is of fixed length and contains a pointer to the beginning of the corre-
sponding record in the database file.

begins with a discussion of the variant normally referred to simply as a “B-tree.”
Section 10.5.1 presents the most widely implemented variant, the B+-tree.

10.1 Linear Indexing

A linear index is an index file organized as a sequence of key/pointer pairs where
the keys are in sorted order and the pointers either (1) point to the position of the
complete record on disk, (2) point to the position of the primary key in the primary
index, or (3) are actually the value of the primary key. Depending on its size, a
linear index might be stored in main memory or on disk. A linear index provides
a number of advantages. It provides convenient access to variable-length database
records, because each entry in the index file contains a fixed-length key field and
a fixed-length pointer to the beginning of a (variable-length) record as shown in
Figure 10.1. A linear index also allows for efficient search and random access to
database records, becase it is amenable to binary search.

If the database contains enough records, the linear index might be too large
to store in main memory. This makes binary search of the index more expensive
because many disk accesses would typically be required by the search process. One
solution to this problem is to store a second-level linear index in main memory that
indicates which disk block in the index file stores a desired key. For example, the
linear index on disk might reside in a series of 1024-byte blocks. If each key/pointer
pair in the linear index requires 8 bytes, then 128 keys are stored per block. The
second-level index, stored in main memory, consists of a simple table storing the
value of the key in the first position of each block in the linear index file. This
arrangement is shown in Figure 10.2. If the linear index requires 1024 disk blocks
(1MB), the second-level index contains only 1024 entries, one per disk block. To
find which disk block contains a desired search key value, first search through the

360 Chap. 10 Indexing

1 2003 5894

Second Level Index

1 2001 5894 9942 10528 10984

Linear Index: Disk Blocks

56882003

10528

Figure 10.2 A simple two-level linear index. The linear index is stored on disk.
The smaller, second-level index is stored in main memory. Each element in the
second-level index stores the first key value in the corresponding disk block of the
index file. In this example, the first disk block of the linear index stores keys in
the range 1 to 2001, and the second disk block stores keys in the range 2003 to
5688. Thus, the first entry of the second-level index is key value 1 (the first key
in the first block of the linear index), while the second entry of the second-level
index is key value 2003.

Jones

Smith

Zukowski

AA10

AX33

ZQ99

AB12

AX35

AB39

ZX45

FF37

Figure 10.3 A two-dimensional linear index. Each row lists the primary keys
associated with a particular secondary key value. In this example, the secondary
key is a name. The primary key is a unique four-character code.

1024-entry table to find the greatest value less than or equal to the search key. This
directs the search to the proper block in the index file, which is then read into
memory. At this point, a binary search within this block will produce a pointer to
the actual record in the database. Because the second-level index is stored in main
memory, accessing a record by this method requires two disk reads: one from the
index file and one from the database file for the actual record.

Every time a record is inserted to or deleted from the database, all associated
secondary indices must be updated. Updates to a linear index are expensive, be-
cause the entire contents of the array might be shifted by one position. Another
problem is that multiple records with the same secondary key each duplicate that
key value within the index. When the secondary key field has many duplicates, such
as when it has a limited range (e.g., a field to indicate job category from among a
small number of possible job categories), this duplication might waste considerable
space.

One improvement on the simple sorted array is a two-dimensional array where
each row corresponds to a secondary key value. A row contains the primary keys

Sec. 10.2 ISAM 361

whose records have the indicated secondary key value. Figure 10.3 illustrates this
approach. Now there is no duplication of secondary key values, possibly yielding a
considerable space savings. The cost of insertion and deletion is reduced, because
only one row of the table need be adjusted. Note that a new row is added to the array
when a new secondary key value is added. This might lead to moving many records,
but this will happen infrequently in applications suited to using this arrangement.

A drawback to this approach is that the array must be of fixed size, which
imposes an upper limit on the number of primary keys that might be associated
with a particular secondary key. Furthermore, those secondary keys with fewer
records than the width of the array will waste the remainder of their row. A better
approach is to have a one-dimensional array of secondary key values, where each
secondary key is associated with a linked list. This works well if the index is stored
in main memory, but not so well when it is stored on disk because the linked list
for a given key might be scattered across several disk blocks.

Consider a large database of employee records. If the primary key is the em-
ployee’s ID number and the secondary key is the employee’s name, then each
record in the name index associates a name with one or more ID numbers. The
ID number index in turn associates an ID number with a unique pointer to the full
record on disk. The secondary key index in such an organization is also known
as an inverted list or inverted file. It is inverted in that searches work backwards
from the secondary key to the primary key to the actual data record. It is called a
list because each secondary key value has (conceptually) a list of primary keys as-
sociated with it. Figure 10.4 illustrates this arrangement. Here, we have last names
as the secondary key. The primary key is a four-character unique identifier.

Figure 10.5 shows a better approach to storing inverted lists. An array of sec-
ondary key values is shown as before. Associated with each secondary key is a
pointer to an array of primary keys. The primary key array uses a linked-list im-
plementation. This approach combines the storage for all of the secondary key lists
into a single array, probably saving space. Each record in this array consists of a
primary key value and a pointer to the next element on the list. It is easy to insert
and delete secondary keys from this array, making this a good implementation for
disk-based inverted files.

10.2 ISAM

How do we handle large databases that require frequent update? The main prob-
lem with the linear index is that it is a single, large array that does not lend itself
to updates because a single update can require changing the position of every key

362 Chap. 10 Indexing

Jones

Smith

Zukowski

Primary
Key

AA10

AB12

AB39

FF37

AX33

AX35

ZX45

ZQ99

Secondary
Key

Figure 10.4 Illustration of an inverted list. Each secondary key value is stored
in the secondary key list. Each secondary key value on the list has a pointer to a
list of the primary keys whose associated records have that secondary key value.

Index

0

1

3

Primary
Key Next

AA10

AX33

ZX45

ZQ99

AB12

AB39

AX35

FF37

4

6

5

7

2

Key

Jones

Smith

Zukowski

0

1

2

3

4

5

6

7

Secondary

Figure 10.5 An inverted list implemented as an array of secondary keys and
combined lists of primary keys. Each record in the secondary key array contains
a pointer to a record in the primary key array. The next field of the primary key
array indicates the next record with that secondary key value.

Sec. 10.2 ISAM 363

Cylinder
Overflow

Cylinder

Overflow

Index

Cylinder Keys

In-memory
Table of

Cylinder 1 Cylinder 2

Records Records

Cylinder
Index

System

Overflow
Cylinder

Figure 10.6 Illustration of the ISAM indexing system.

in the index. Inverted lists reduce this problem, but they are only suitable for sec-
ondary key indices with many fewer secondary key values than records. The linear
index would perform well as a primary key index if it could somehow be broken
into pieces such that individual updates affect only a part of the index. This con-
cept will be pursued throughout the rest of this chapter, eventually culminating in
the B+-tree, the most widely used indexing method today. But first, we begin by
studying ISAM, an early attempt to solve the problem of large databases requiring
frequent update. Its weaknesses help to illustrate why the B+-tree works so well.

Before the invention of effective tree indexing schemes, a variety of disk-based
indexing methods were in use. All were rather cumbersome, largely because no
adequate method for handling updates was known. Typically, updates would cause
the index to degrade in performance. ISAM is one example of such an index and
was widely used by IBM prior to adoption of the B-tree.

ISAM is based on a modified form of the linear index, as illustrated by Fig-
ure 10.6. Records are stored in sorted order by primary key. The disk file is divided
among a number of cylinders on disk.1 Each cylindar holds a section of the list in
sorted order. Initially, each cylinder is not filled to capacity, and the extra space is
set aside in the cylinder overflow. In memory is a table listing the lowest key value
stored in each cylinder of the file. Each cylinder contains a table listing the lowest

1Recall from Section 8.2.1 that a cylinder is all of the tracks readable from a particular placement
of the heads on the multiple platters of a disk drive.

364 Chap. 10 Indexing

key value for each block in that cylinder, called the cylinder index. When new
records are inserted, they are placed in the correct cylinder’s overflow area (in ef-
fect, a cylinder acts as a bucket). If a cylinder’s overflow area fills completely, then
a system-wide overflow area is used. Search proceeds by determining the proper
cylinder from the system-wide table kept in main memory. The cylinder’s block
table is brought in from disk and consulted to determine the correct block. If the
record is found in that block, then the search is complete. Otherwise, the cylin-
der’s overflow area is searched. If that is full, and the record is not found, then the
system-wide overflow is searched.

After initial construction of the database, so long as no new records are inserted
or deleted, access is efficient because it rquires only two disk fetches. The first
disk fetch recovers the block table for the desired cylinder. The second disk fetch
recovers the block that, under good conditions, contains the record. After many
inserts, the overflow list becomes too long, resulting in significant search time as
the cylinder overflow area fills up. Under extreme conditions, many searches might
eventually lead to the system overflow area. The “solution” to this problem is to
periodically reorganize the entire database. This means rebalancing the records
among the cylinders, sorting the records within each cylinder, and updating both
the system index table and the within-cylinder block table. Such reorganization
was typical of database systems during the 1960s and would normally be done
each night or weekly.

10.3 Tree-based Indexing

Linear indexing is efficient when the database is static, that is, when records are
inserted and deleted rarely or never. ISAM is adequate for a limited number of
updates, but not for frequent changes. Because it has essentially two levels of
indexing, ISAM will also break down for a truly large database where the number
of cylinders is too great for the top-level index to fit in main memory.

In their most general form, database applications have the following character-
istics:

1. Large sets of records are frequently updated.
2. Search is by one or a combination of several keys.
3. Key range queries or min/max queries are used.

For such databases, a better organization must be found. One approach would
be to use the binary search tree (BST) to store primary and secondary key indices.
BSTs can store duplicate key values, they provide efficient insertion and deletion as
well as efficient search, and they can perform efficient range queries. When there

Sec. 10.3 Tree-based Indexing 365

is enough main memory, the BST is a viable option for implementing both primary
and secondary key indices.

Unfortunately, the BST can become unbalanced. Even under relatively good
conditions, the depth of leaf nodes can easily vary by a factor of two. This might
not be a significant concern when the tree is stored in main memory because the
time required is still Θ(log n) for search and update. When the tree is stored on
disk, however, the depth of nodes in the tree becomes crucial. Every time a BST
node B is visited, it is necessary to visit all nodes along the path from the root to B.
Each node on this path must be retrieved from disk. Each disk access returns a
block of information. If a node is on the same block as its parent, then the cost to
find that node is trivial once its parent is in main memory. Thus, it is desirable to
keep subtrees together on the same block. Unfortunately, many times a node is not
on the same block as its parent. Thus, each access to a BST node could potentially
require that another block to be read from disk. Using a buffer pool to store multiple
blocks in memory can mitigate disk access problems if BST accesses display good
locality of reference. But a buffer pool cannot eliminate disk I/O entirely. The
problem becomes greater if the BST is unbalanced, because nodes deep in the tree
have the potential of causing many disk blocks to be read. Thus, there are two
significant issues that must be addressed to have efficient search from a disk-based
BST. The first is how to keep the tree balanced. The second is how to arrange the
nodes on blocks so as to keep the number of blocks encountered on any path from
the root to the leaves at a minimum.

We could select a scheme for balancing the BST and allocating BST nodes to
blocks in a way that minimizes disk I/O, as illustrated by Figure 10.7. However,
maintaining such a scheme in the face of insertions and deletions is difficult. In
particular, the tree should remain balanced when an update takes place, but doing
so might require much reorganization. Each update should affect only a disk few
blocks, or its cost will be too high. As you can see from Figure 10.8, adopting a
rule such as requiring the BST to be complete can cause a great deal of rearranging
of data within the tree.

We can solve these problems by selecting another tree structure that automat-
ically remains balanced after updates, and which is amenable to storing in blocks.
There are a number of widely used balanced tree data structures, and there are also
techniques for keeping BSTs balanced. Examples are the AVL and splay trees dis-
cussed in Section 13.2. As an alternative, Section 10.4 presents the 2-3 tree, which
has the property that its leaves are always at the same level. The main reason for
discussing the 2-3 tree here in preference to the other balanced search trees is that

366 Chap. 10 Indexing

Figure 10.7 Breaking the BST into blocks. The BST is divided among disk
blocks, each with space for three nodes. The path from the root to any leaf is
contained on two blocks.

5

3

2 4 6 3 5 7

(a) (b)

7

4

2 6

1

Figure 10.8 An attempt to rebalance a BST after insertion can be expensive.
(a) A BST with six nodes in the shape of a complete binary tree. (b) A node with
value 1 is inserted into the BST of (a). To maintain both the complete binary tree
shape and the BST property, a major reorganization of the tree is required.

it naturally leads to the B-tree of Section 10.5, which is by far the most widely used
indexing method today.

10.4 2-3 Trees

This section presents a data structure called the 2-3 tree. The 2-3 tree is not a binary
tree, but instead its shape obeys the following definition:

1. A node contains one or two keys.
2. Every internal node has either two children (if it contains one key) or three

children (if it contains two keys). Hence the name.
3. All leaves are at the same level in the tree, so the tree is always height bal-

anced.

In addition to these shape properties, the 2-3 tree has a search tree property
analogous to that of a BST. For every node, the values of all descendants in the left
subtree are less than the value of the first key, while values in the center subtree

Sec. 10.4 2-3 Trees 367

33

23 30 48

18

12

20 21 312415 4510 47 5250

Figure 10.9 A 2-3 tree.

are greater than or equal to the value of the first key. If there is a right subtree
(equivalently, if the node stores two keys), then the values of all descendants in
the center subtree are less than the value of the second key, while values in the
right subtree are greater than or equal to the value of the second key. To maintain
these shape and search properties requires that special action be taken when nodes
are inserted and deleted. The 2-3 tree has the advantage over the BST in that the
2-3 tree can be kept height balanced at relatively low cost.

Figure 10.9 illustrates the 2-3 tree. Nodes are indicated as rectangular boxes
with two key fields. (These nodes actually would contain complete records or point-
ers to complete records, but the figures will show oly the keys.) Internal nodes with
only two children have an empty right key field. Leaf nodes might contain either
one or two keys. Figure 10.10 is a class declaration for the 2-3 tree node.

Note that this sample declaration does not distinguish between leaf and internal
nodes and so is space inefficient, because leaf nodes store three pointers each. The
techniques of Section 5.3.1 can be applied here to implement separate internal and
leaf node types.

From the defining rules for 2-3 trees we can derive relationships between the
number of nodes in the tree and the depth of the tree. A 2-3 tree of height k has at
least 2k−1 leaves, because if every internal node has two children it degenerates to
the shape of a complete binary tree. A 2-3 tree of height k has at most 3k−1 leaves,
because each internal node can have at most three children.

Searching for a value in a 2-3 tree is similar to searching in a BST. Search
begins at the root. If the root does not contain the search key K, then the search
progresses to the only subtree that can possibly contain K. The value(s) stored in
the root node determine which is the correct subtree. For example, if searching for
the value 30 in the tree of Figure 10.9, we begin with the root node. Because 30 is
between 18 and 33, it can only be in the middle subtree. Searching the middle child
of the root node yields the desired record. If searching for 15, then the first step is
again to search the root node. Because 15 is less than 18, the first (left) branch is
taken. At the next level, we take the second branch to the leaf node containing 15.

368 Chap. 10 Indexing

/** 2-3 tree node implementation */
class TTNode<K extends Comparable<? super K>,E> {

private K lkey; // The node’s left key
private E lval; // The left record
private K rkey; // The node’s right key
private E rval; // The right record
private TTNode<K,E> left; // Pointer to left child
private TTNode<K,E> center; // Pointer to middle child
private TTNode<K,E> right; // Pointer to right child

public TTNode() { center = left = right = null; }
public TTNode(K lk, E lv, K rk, E rv, TTNode<K,E> p1,

TTNode<K,E> p2, TTNode<K,E> p3) {
lkey = lk; rkey = rk;
lval = lv; rval = rv;
left = p1; center = p2; right = p3;

}

public boolean isLeaf() { return left == null; }
public TTNode<K,E> lchild() { return left; }
public TTNode<K,E> rchild() { return right; }
public TTNode<K,E> cchild() { return center; }
public K lkey() { return lkey; } // Left key
public E lval() { return lval; } // Left value
public K rkey() { return rkey; } // Right key
public E rval() { return rval; } // Right value
public void setLeft(K k, E e) { lkey = k; lval = e; }
public void setRight(K k, E e) { rkey = k; rval = e; }
public void setLeftChild(TTNode<K,E> it) { left = it; }
public void setCenterChild(TTNode<K,E> it)

{ center = it; }
public void setRightChild(TTNode<K,E> it) { right = it; }

Figure 10.10 The 2-3 tree node implementation.

If the search key were 16, then upon encountering the leaf containing 15 we would
find that the search key is not in the tree. Below is an implementation for the
2-3 tree search method.

Sec. 10.4 2-3 Trees 369

12

10 20 21

33

23 30

24 31 50

18

45

48

47 5215 15

14

Figure 10.11 Simple insert into the 2-3 tree of Figure 10.9. The value 14 is
inserted into the tree at the leaf node containing 15. Because there is room in the
node for a second key, it is simply added to the left position with 15 moved to the
right position.

private E findhelp(TTNode<K,E> root, K k) {
if (root == null) return null; // val not found
if (k.compareTo(root.lkey()) == 0) return root.lval();
if ((root.rkey() != null) && (k.compareTo(root.rkey())

== 0))
return root.rval();

if (k.compareTo(root.lkey()) < 0) // Search left
return findhelp(root.lchild(), k);

else if (root.rkey() == null) // Search center
return findhelp(root.cchild(), k);

else if (k.compareTo(root.rkey()) < 0) // Search center
return findhelp(root.cchild(), k);

else return findhelp(root.rchild(), k); // Search right
}

Insertion into a 2-3 tree is similar to insertion into a BST to the extent that the
new record is placed in the appropriate leaf node. Unlike BST insertion, a new
child is not created to hold the record being inserted, that is, the 2-3 tree does not
grow downward. The first step is to find the leaf node that would contain the record
if it were in the tree. If this leaf node contains only one value, then the new record
can be added to that node with no further modification to the tree, as illustrated in
Figure 10.11. In this example, a record with key value 14 is inserted. Searching
from the root, we come to the leaf node that stores 15. We add 14 as the left value
(pushing the record with key 15 to the rightmost position).

If we insert the new record into a leaf node L that already contains two records,
then more space must be created. Consider the two records of node L and the
record to be inserted without further concern for which two were already in L and
which is the new record. The first step is to split L into two nodes. Thus, a new
node — call it L′ — must be created from free store. L receives the record with
the least of the three key values. L′ receives the greatest of the three. The record

370 Chap. 10 Indexing

33

15

23 30 48 52

45 47 50 5510

12

18

20 21 24 31

Figure 10.12 A simple node-splitting insert for a 2-3 tree. The value 55 is added
to the 2-3 tree of Figure 10.9. This makes the node containing values 50 and 52
split, promoting value 52 to the parent node.

with the middle of the three key value is passed up to the parent node along with a
pointer to L′. This is called a promotion. The promoted key is then inserted into
the parent. If the parent currently contains only one record (and thus has only two
children), then the promoted record and the pointer to L′ are simply added to the
parent node. If the parent is full, then the split-and-promote process is repeated.
Figure 10.12 illustrates a simple promotion. Figure 10.13 illustrates what happens
when promotions require the root to split, adding a new level to the tree. In either
case, all leaf nodes continue to have equal depth. Figures 10.14 and 10.15 present
an implementation for the insertion process.

Note that inserthelp of Figure 10.14 takes three parameters. The first is
a pointer to the root of the current subtree, named rt. The second is the key for
the record to be inserted, and the third is the record itself. The return value for
inserthelp is a pointer to a 2-3 tree node. If rt is unchanged, then a pointer to
rt is returned. If rt is changed (due to the insertion causing the node to split), then
a pointer to the new subtree root is returned, with the key value and record value in
the leftmost fields, and a pointer to the (single) subtree in the center pointer field.
This revised node will then be added to the paren, as illustrated in Figure 10.13.

When deleting a record from the 2-3 tree, there are three cases to consider. The
simplest occurs when the record is to be removed from a leaf node containing two
records. In this case, the record is simply removed, and no other nodes are affected.
The second case occurs when the only record in a leaf node is to be removed. The
third case occurs when a record is to be removed from an internal node. In both
the second and the third cases, the deleted record is replaced with another that can
take its place while maintaining the correct order, similar to removing a node from
a BST. If the tree is sparse enough, there is no such record available that will allow
all nodes to still maintain at least one record. In this situation, sibling nodes are
merged together. The delete operation for the 2-3 tree is excessively complex and
will not be described further. Instead, a complete discussion of deletion will be

Sec. 10.4 2-3 Trees 371

23

20

(a) (b)

(c)

3020

24 31 21 24 3121 1919

12

10 19 24

30

31

33

45 47 50 52

23

18

20

21

48

15

3023

3318

Figure 10.13 Example of inserting a record that causes the 2-3 tree root to split.
(a) The value 19 is added to the 2-3 tree of Figure 10.9. This causes the node
containing 20 and 21 to split, promoting 20. (b) This in turn causes the internal
node containing 23 and 30 to split, promoting 23. (c) Finally, the root node splits,
promoting 23 to become the left record in the new root. The result is that the tree
becomes one level higher.

postponed until the next section, where it can be generalized for a particular variant
of the B-tree.

The 2-3 tree insert and delete routines do not add new nodes at the bottom of
the tree. Instead they cause leaf nodes to split or merge, possibly causing a ripple
effect moving up the tree to the root. If necessary the root will split, causing a new
root node to be created and making the tree one level deeper. On deletion, if the
last two children of the root merge, then the root node is removed and the tree will
lose a level. In either case, all leaf nodes are always at the same level. When all
leaf nodes are at the same level, we say that a tree is height balanced. Because the
2-3 tree is height balanced, and every internal node has at least two children, we
know that the maximum depth of the tree is log n. Thus, all 2-3 tree insert, find,
and delete operations require Θ(log n) time.

372 Chap. 10 Indexing

private TTNode<K,E> inserthelp(TTNode<K,E> rt, K k, E e) {
TTNode<K,E> retval;
if (rt == null) // Empty tree: create a leaf node for root

return new TTNode<K,E>(k, e, null, null,
null, null, null);

if (rt.isLeaf()) // At leaf node: insert here
return rt.add(new TTNode<K,E>(k, e, null, null,

null, null, null));
// Add to internal node
if (k.compareTo(rt.lkey()) < 0) { // Insert left

retval = inserthelp(rt.lchild(), k, e);
if (retval == rt.lchild()) return rt;
else return rt.add(retval);

}
else if((rt.rkey() == null) ||

(k.compareTo(rt.rkey()) < 0)) {
retval = inserthelp(rt.cchild(), k, e);
if (retval == rt.cchild()) return rt;
else return rt.add(retval);

}
else { // Insert right

retval = inserthelp(rt.cchild(), k, e);
if (retval == rt.cchild()) return rt;
else return rt.add(retval);

}
}

Figure 10.14 The 2-3 tree insert routine.

10.5 B-Trees

This section presents the B-tree. B-trees are usually attributed to R. Bayer and
E. McCreight who described the B-tree in a 1972 paper. By 1979, B-trees had re-
placed virtually all large-file access methods other than hashing. B-trees, or some
variant of B-trees, are the standard file organization for applications requiring inser-
tion, deletion, and key range searches. B-trees address effectively all of the major
problems encountered when implementing disk-based search trees:

1. B-trees are always height balanced, with all leaf nodes at the same level.

2. Update and search operations affect only a few disk blocks. The fewer the
number of disk blocks affected, the less disk I/O is required.

3. B-trees keep related records (that is, records with similar key values) on the
same disk block, which helps to minimize disk I/O on searches due to locality
of reference.

Sec. 10.5 B-Trees 373

/** Add a new key/value pair to the node. There might be a
subtree associated with the record being added. This
information comes in the form of a 2-3 tree node with
one key and a (possibly null) subtree through the
center pointer field. */

public TTNode<K,E> add(TTNode<K,E> it) {
if (rkey == null) { // Only one key, add here

if (lkey.compareTo(it.lkey()) < 0) {
rkey = it.lkey(); rval = it.lval();
right = center; center = it.cchild();

}
else {

rkey = lkey; rval = lval; right = center;
lkey = it.lkey(); lval = it.lval();
center = it.cchild();

}
return this;

}
else if (lkey.compareTo(it.lkey()) >= 0) { // Add left

center = new TTNode<K,E>(rkey, rval, null, null,
center, right, null);

rkey = null; rval = null; right = null;
it.setLeftChild(left); left = it;
return this;

}
else if (rkey.compareTo(it.lkey()) < 0) { // Add center

it.setCenterChild(new TTNode<K,E>(rkey, rval, null,
null, it.cchild(), right, null));

it.setLeftChild(this);
rkey = null; rval = null; right = null;
return it;

}
else { // Add right

TTNode<K,E> N1 = new TTNode<K,E>(rkey, rval, null,
null, this, it, null);

it.setLeftChild(right);
right = null; rkey = null; rval = null;
return N1;

}
}

Figure 10.15 The 2-3 tree node add method.

374 Chap. 10 Indexing

20

12 18 21 23 30 31 38 4710

15

24

33 45 48

50 52 60

Figure 10.16 A B-tree of order four.

4. B-trees guarantee that every node in the tree will be full at least to a certain
minimum percentage. This improves space efficiency while reducing the
typical number of disk fetches necessary during a search or update operation.

A B-tree of order m is defined to have the following shape properties:

• The root is either a leaf or has at least two children.
• Each internal node, except for the root, has between dm/2e and m children.
• All leaves are at the same level in the tree, so the tree is always height bal-

anced.

The B-tree is a generalization of the 2-3 tree. Put another way, a 2-3 tree is a
B-tree of order three. Normally, the size of a node in the B-tree is chosen to fill a
disk block. A B-tree node implementation typically allows 100 or more children.
Thus, a B-tree node is equivalent to a disk block, and a “pointer” value stored
in the tree is actually the number of the block containing the child node (usually
interpreted as an offset from the beginning of the corresponding disk file). In a
typical application, B-tree block I/O will be managed using a buffer pool and a
block-replacement scheme such as LRU (see Section 8.3).

Figure 10.16 shows a B-tree of order four. Each node contains up to three keys,
and internal nodes have up to four children.

Search in a B-tree is a generalization of search in a 2-3 tree. It is an alternating
two-step process, beginning with the root node of the B-tree.

1. Perform a binary search on the records in the current node. If a record with
the search key is found, then return that record. If the current node is a leaf
node and the key is not found, then report an unsuccessful search.

2. Otherwise, follow the proper branch and repeat the process.

For example, consider a search for the record with key value 47 in the tree of
Figure 10.16. The root node is examined and the second (right) branch taken. After

Sec. 10.5 B-Trees 375

examining the node at level 1, the third branch is taken to the next level to arrive at
the leaf node containing a record with key value 47.

B-tree insertion is a generalization of 2-3 tree insertion. The first step is to find
the leaf node that should contain the key to be inserted, space permitting. If there
is room in this node, then insert the key. If there is not, then split the node into two
and promote the middle key to the parent. If the parent becomes full, then it is split
in turn, and its middle key promoted.

Note that this insertion process is guaranteed to keep all nodes at least half full.
For example, when we attempt to insert into a full internal node of a B-tree of order
four, there will now be five children that must be dealt with. The node is split into
two nodes containing two keys each, thus retaining the B-tree property. The middle
of the five children is promoted to its parent.

10.5.1 B+-Trees

The previous section mentioned that B-trees are universally used to implement
large-scale disk-based systems. Actually, the B-tree as described in the previ-
ous section is almost never implemented, nor is the 2-3 tree as described in Sec-
tion 10.4. What is most commonly implemented is a variant of the B-tree, called
the B+-tree. When greater efficiency is required, a more complicated variant known
as the B∗-tree is used.

When data are static, it is an extremely efficient way to search. The problem is
those pesky inserts and deletes. Imagine that we want to keep the idea of storing a
sorted list, but make it more flexible by breaking the list into manageable chunks
that are more easily updated. How might we do that? First, we need to decide how
big the chunks should be. Since the data are on disk, it seems reasonable to store
a chunk that is the size of a disk block, or a small multiple of the disk block size.
We could insert a new record with a chunk that hasn’t filled its block. But what if
the chunk fills up the entire block that contains it? We could just split it in half.
What if we want to delete a record? We could just take the deleted record out of
the chunk, but we might not want a lot of near-empty chunks. So we could put
adjacent chunks together if they have only a small amount of data between them.
Or we could shuffle data between adjacent chunks that together contain more data.
The big problem would be how to find the desired chunk when processing a record
with a given key. Perhaps some sort of tree-like structure could be used to locate
the appropriate chunk. These ideas are exactly what motivate the B+-tree. The
B+-tree is essentially a mechanism for managing a list broken into chunks.

The most significant difference between the B+-tree and the BST or the 2-3 tree
is that the B+-tree stores records only at the leaf nodes. Internal nodes store key

376 Chap. 10 Indexing

values, but these are used solely as placeholders to guide the search. This means
that internal nodes are significantly different in structure from leaf nodes. Inter-
nal nodes store keys to guide the search, associating each key with a pointer to a
child B+-tree node. Leaf nodes store actual records, or else keys and pointers to
actual records in a separate disk file if the B+-tree is being used purely as an in-
dex. Depending on the size of a record as compared to the size of a key, a leaf
node in a B+-tree of order m might have enough room to store more or less than
m records. The requirement is simply that the leaf nodes store enough records to
remain at least half full. The leaf nodes of a B+-tree are normally linked together
to form a doubly linked list. Thus, the entire collection of records can be traversed
in sorted order by visiting all the leaf nodes on the linked list. Here is a Java-like
pseudocode representation for the B+-tree node interface. Leaf node and internal
node subclasses would implement this base class.

/** Interface for B+ Tree nodes */
public interface BPNode<K,E> {

public boolean isLeaf();
public int numrecs();
public K[] keys();

}

An important implementation detail to note is that while Figure 10.16 shows
internal nodes containing three keys and four pointers, class BPNode is slightly
different in that it stores key/pointer pairs. Figure 10.16 shows the B+-tree as it
is traditionally drawn. To simplify implementation in practice, nodes really do
associate a key with each pointer. Each internal node should be assumed to hold
in the leftmost position an additional key that is less than or equal to any possible
key value in the node’s leftmost subtree. B+-tree implementations typically store
an additional dummy record in the leftmost leaf node whose key value is less than
any legal key value.

B+-trees are exceptionally good for range queries. Once the first record in
the range has been found, the rest of the records with keys in the range can be
accessed by sequential processing of the remaining records in the first node, and
then continuing down the linked list of leaf nodes as far as necessary. Figure 10.17
illustrates the B+-tree.

Search in a B+-tree is nearly identical to search in a regular B-tree, except that
the search must always continue to the proper leaf node. Even if the search-key
value is found in an internal node, this is only a placeholder and does not provide
access to the actual record. To find a record with key value 33 in the B+-tree of
Figure 10.17, search begins at the root. The value 33 stored in the root merely
serves as a placeholder, indicating that keys with values greater than or equal to

Sec. 10.5 B-Trees 377

23

30 31 33 45 47

48

48 50 5210 12 15 18 19 20 21 22

33

18

23

Figure 10.17 Example of a B+-tree of order four. Internal nodes must store
between two and four children. For this example, the record size is assumed to be
such that leaf nodes store between three and five records.

33 are found in the second subtree. From the second child of the root, the first
branch is taken to reach the leaf node containing the actual record (or a pointer to
the actual record) with key value 33. Here is a pseudocode sketch of the B+-tree
search algorithm:

private E findhelp(BPNode<K,E> rt, K k) {
int currec = binaryle(rt.keys(), rt.numrecs(), k);
if (rt.isLeaf())

if ((((BPLeaf<K,E>)rt).keys())[currec].compareTo(k)
== 0)

return ((BPLeaf<K,E>)rt).recs(currec);
else return null;

else
return findhelp(((BPInternal<K,E>)rt).pointers(currec),

k);
}

B+-tree insertion is similar to B-tree insertion. First, the leaf L that should
contain the record is found. If L is not full, then the new record is added, and no
other B+-tree nodes are affected. If L is already full, split it in two (dividing the
records evenly among the two nodes) and promote a copy of the least-valued key
in the newly formed right node. As with the 2-3 tree, promotion might cause the
parent to split in turn, perhaps eventually leading to splitting the root and causing
the B+-tree to gain a new level. B+-tree insertion keeps all leaf nodes at equal
depth. Figure 10.18 illustrates the insertion process through several examples. Fig-
ure 10.19 shows a Java-like pseudocode sketch of the B+-tree insert algorithm.

To delete record R from the B+-tree, first locate the leaf L that contains R. If L
is more than half full, then we need only remove R, leaving L still at least half full.
This is demonstrated by Figure 10.20.

If deleting a record reduces the number of records in the node below the min-
imum threshold (called an underflow), then we must do something to keep the

378 Chap. 10 Indexing

33

(b)(a)

1012 233348 10 23 33 5012

483318

(c)

33

23 4818

(d)

48

1012 18 20 2123 31 33 45 47 48 5015 52

12 18 20 21 23 30 31 33 45 4710 15 48 50 52

Figure 10.18 Examples of B+-tree insertion. (a) A B+-tree containing five
records. (b) The result of inserting a record with key value 50 into the tree of (a).
The leaf node splits, causing creation of the first internal node. (c) The B+-tree of
(b) after further insertions. (d) The result of inserting a record with key value 30
into the tree of (c). The second leaf node splits, which causes the internal node to
split in turn, creating a new root.

private BPNode<K,E> inserthelp(BPNode<K,E> rt, K k, E e) {
BPNode<K,E> retval;
if (rt.isLeaf()) // At leaf node: insert here

return ((BPLeaf<K,E>)rt).add(k, e);
// Add to internal node
int currec = binaryle(rt.keys(), rt.numrecs(), k);
BPNode<K,E> temp = inserthelp(

((BPInternal<K,E>)root).pointers(currec), k, e);
if (temp != ((BPInternal<K,E>)rt).pointers(currec))

return ((BPInternal<K,E>)rt).add((BPInternal<K,E>)temp);
else

return rt;
}

Figure 10.19 A Java-like pseudocode sketch of the B+-tree insert algorithm.

Sec. 10.5 B-Trees 379

33

23 4818

101215 23 30 3119 2021 22 4733 45 48 50 52

Figure 10.20 Simple deletion from a B+-tree. The record with key value 18 is
removed from the tree of Figure 10.17. Note that even though 18 is also a place-
holder used to direct search in the parent node, that value need not be removed
from internal nodes even if no record in the tree has key value 18. Thus, the
leftmost node at level one in this example retains the key with value 18 after the
record with key value 18 has been removed from the second leaf node.

33

19 4823

101518 19 20 21 22 33 45 4723 30 31 48 50 52

Figure 10.21 Deletion from the B+-tree of Figure 10.17 via borrowing from a
sibling. The key with value 12 is deleted from the leftmost leaf, causing the record
with key value 18 to shift to the leftmost leaf to take its place. Note that the parent
must be updated to properly indicate the key range within the subtrees. In this
example, the parent node has its leftmost key value changed to 19.

node sufficiently full. The first choice is to look at the node’s adjacent siblings to
determine if they have a spare record that can be used to fill the gap. If so, then
enough records are transferred from the sibling so that both nodes have about the
same number of records. This is done so as to delay as long as possible the next
time when a delete causes this node to underflow again. This process might require
that the parent node has its placeholder key value revised to reflect the true first key
value in each node. Figure 10.21 illustrates the process.

If neither sibling can lend a record to the underfull node (call it N), then N
must give its records to a sibling and be removed from the tree. There is certainly
room to do this, because the sibling is at most half full (remember that it had no
records to contribute to the current node), and N has become less than half full
because it is underflowing. This merge process combines two subtrees of the parent,
which might cause it to underflow in turn. If the last two children of the root merge

380 Chap. 10 Indexing

48

(a)

45 4748 50 52

23

3318

(b)

18 19 20 21 23 30 31101215 22 4850524547

Figure 10.22 Deleting the record with key value 33 from the B+-tree of Fig-
ure 10.17 via collapsing siblings. (a) The two leftmost leafnodes merge together
to form a single leaf. Unfortunately, the parent node now has only one child.
(b) Because the left subtree has a spare leaf node, that node is passed to the right
subtree. The placeholder values of the root and the right internal node are updated
to reflect the changes. Value 23 moves to the root, and old root value 33 moves to
the rightmost internal node.

/** Delete a record with the given key value, and
return true if the root underflows */

private boolean removehelp(BPNode<K,E> rt, K k) {
int currec = binaryle(rt.keys(), rt.numrecs(), k);
if (rt.isLeaf())

if ((((BPLeaf<K,E>)rt).keys()[currec]).compareTo(k)
== 0)

return ((BPLeaf<K,E>)rt).delete(currec);
else return false;

else // Process internal node
if (removehelp(((BPInternal<K,E>)rt).pointers(currec),

k))
// Child will merge if necessary
return ((BPInternal<K,E>)rt).underflow(currec);

else return false;
}

Figure 10.23 Java-like pseudocode for the B+-tree delete algorithm.

together, then the tree loses a level. Figure 10.22 illustrates the node-merge deletion
process. Figure 10.23 shows Java-like pseudocode for the B+-tree delete algorithm.

Sec. 10.5 B-Trees 381

The B+-tree requires that all nodes be at least half full (except for the root).
Thus, the storage utilization must be at least 50%. This is satisfactory for many
implementations, but note that keeping nodes fuller will result both in less space
required (because there is less empty space in the disk file) and in more efficient
processing (fewer blocks on average will be read into memory because the amount
of information in each block is greater). Because B-trees have become so popular,
many algorithm designers have tried to improve B-tree performance. One method
for doing so is to use the B+-tree variant known as the B∗-tree. The B∗-tree is
identical to the B+-tree, except for the rules used to split and merge nodes. Instead
of splitting a node in half when it overflows, the B∗-tree gives some records to its
neighboring sibling, if possible. If the sibling is also full, then these two nodes split
into three. Similarly, when a node underflows, it is combined with its two siblings,
and the total reduced to two nodes. Thus, the nodes are always at least two thirds
full.2

10.5.2 B-Tree Analysis

The asymptotic cost of search, insertion, and deletion of records from B-trees,
B+-trees, and B∗-trees is Θ(log n) where n is the total number of records in the
tree. However, the base of the log is the (average) branching factor of the tree.
Typical database applications use extremely high branching factors, perhaps 100 or
more. Thus, in practice the B-tree and its variants are extremely shallow.

As an illustration, consider a B+-tree of order 100 and leaf nodes that contain
up to 100 records. A one-level B+-tree can have at most 100 records. A two-level
B+-tree must have at least 100 records (2 leaves with 50 records each). It has at
most 10,000 records (100 leaves with 100 records each). A three-level B+-tree
must have at least 5000 records (two second-level nodes with 50 children contain-
ing 50 records each) and at most one million records (100 second-level nodes with
100 full children each). A four-level B+-tree must have at least 250,000 records
and at most 100 million records. Thus, it would require an extremely large database
to generate a B+-tree of more than four levels.

We can reduce the number of disk fetches required for the B-tree even more
by using the following methods. First, the upper levels of the tree can be stored in
main memory at all times. Because the tree branches so quickly, the top two levels

2This concept can be extended further if higher space utilization is required. However, the update
routines become much more complicated. I once worked on a project where we implemented 3-for-4
node split and merge routines. This gave better performance than the 2-for-3 node split and merge
routines of the B∗-tree. However, the spitting and merging routines were so complicated that even
their author could no longer understand them once they were completed!

382 Chap. 10 Indexing

(levels 0 and 1) require relatively little space. If the B-tree is only four levels deep,
then at most two disk fetches (internal nodes at level two and leaves at level three)
are required to reach the pointer to any given record.

As mentioned earlier, a buffer pool should be used to manage nodes of the
B-tree. Several nodes of the tree would typically be in main memory at one time.
The most straightforward approach is to use a standard method such as LRU to
do node replacement. However, sometimes it might be desirable to “lock” certain
nodes such as the root into the buffer pool. In general, if the buffer pool is even
of modest size (say at least twice the depth of the tree), no special techniques for
node replacement will be required because the upper-level nodes will naturally be
accessed frequently.

10.6 Further Reading

For an expanded discussion of the issues touched on in this chapter, see a gen-
eral file processing text such as File Structures: A Conceptual Toolkit by Folk and
Zoellick [FZ98]. In particular, Folk and Zoellick provide a good discussion of
the relationship between primary and secondary indices. The most thorough dis-
cussion on various implementations for the B-tree is the survey article by Comer
[Com79]. Also see [Sal88] for further details on implementing B-trees. See Shaf-
fer and Brown [SB93] for a discussion of buffer pool management strategies for
B+-tree-like data structures.

10.7 Exercises

10.1 Assume that a computer system has disk blocks of 1024 bytes, and that you
are storing records that have 4-byte keys and 4-byte data fields. The records
are sorted and packed sequentially into the disk file.

(a) Assume that a linear index uses 4 bytes to store the key and 4 bytes
to store the block ID for the associated records. What is the greatest
number of records that can be stored in the file if a linear index of size
256KB is used?

(b) What is the greatest number of records that can be stored in the file if
the linear index is also stored on disk (and thus its size is limited only
by the second-level index) when using a second-level index of 1024
bytes (i.e., 256 key values) as illustrated by Figure 10.2? Each element
of the second-level index references the smallest key value for a disk
block of the linear index.

Sec. 10.7 Exercises 383

10.2 Assume that a computer system has disk blocks of 4096 bytes, and that you
are storing records that have 4-byte keys and 64-byte data fields. The records
are sorted and packed sequentially into the disk file.

(a) Assume that a linear index uses 4 bytes to store the key and 4 bytes
to store the block ID for the associated records. What is the greatest
number of records that can be stored in the file if a linear index of size
2MB is used?

(b) What is the greatest number of records that can be stored in the file if
the linear index is also stored on disk (and thus its size is limited only by
the second-level index) when using a second-level index of 4096 bytes
(i.e., 1024 key values) as illustrated by Figure 10.2? Each element of
the second-level index references the smallest key value for a disk block
of the linear index.

10.3 Modify the function binary of Section 3.5 so as to support variable-length
records with fixed-length keys indexed by a simple linear index as illustrated
by Figure 10.1.

10.4 Assume that a database stores records consisting of a 2-byte integer key and
a variable-length data field consisting of a string. Show the linear index (as
illustrated by Figure 10.1) for the following collection of records:

397 Hello world!
82 XYZ
1038 This string is rather long
1037 This is shorter
42 ABC
2222 Hello new world!

10.5 Each of the following series of records consists of a four-digit primary key
(with no duplicates) and a four-character secondary key (with many dupli-
cates).

3456 DEER
2398 DEER
2926 DUCK
9737 DEER
7739 GOAT
9279 DUCK
1111 FROG
8133 DEER
7183 DUCK
7186 FROG

384 Chap. 10 Indexing

(a) Show the inverted list (as illustrated by Figure 10.4) for this collection
of records.

(b) Show the improved inverted list (as illustrated by Figure 10.5) for this
collection of records.

10.6 Under what conditions will ISAM be more efficient than a B+-tree imple-
mentation?

10.7 Prove that the number of leaf nodes in a 2-3 tree with k levels is between
2k−1 and 3k−1.

10.8 Show the result of inserting the values 55 and 46 into the 2-3 tree of Fig-
ure 10.9.

10.9 You are given a series of records whose keys are letters. The records arrive
in the following order: C, S, D, T, A, M, P, I, B, W, N, G, U, R, K, E, H, O,
L, J. Show the 2-3 tree that results from inserting these records.

10.10 You are given a series of records whose keys are letters. The records are
inserted in the following order: C, S, D, T, A, M, P, I, B, W, N, G, U, R, K,
E, H, O, L, J. Show the tree that results from inserting these records when
the 2-3 tree is modified to be a 2-3+ tree, that is, the internal nodes act only
as placeholders. Assume that the leaf nodes are capable of holding up to two
records.

10.11 Show the result of inserting the value 55 into the B-tree of Figure 10.16.
10.12 Show the result of inserting the values 1, 2, 3, 4, 5, and 6 (in that order) into

the B+-tree of Figure 10.17.
10.13 Show the result of deleting the values 18, 19, and 20 (in that order) from the

B+-tree of Figure 10.22b.
10.14 You are given a series of records whose keys are letters. The records are

inserted in the following order: C, S, D, T, A, M, P, I, B, W, N, G, U, R,
K, E, H, O, L, J. Show the B+-tree of order four that results from inserting
these records. Assume that the leaf nodes are capable of storing up to three
records.

10.15 Assume that you have a B+-tree whose internal nodes can store up to 100
children and whose leaf nodes can store up to 15 records. What are the
minimum and maximum number of records that can be stored by the B+-tree
for 1, 2, 3, 4, and 5 levels?

10.16 Assume that you have a B+-tree whose internal nodes can store up to 50
children and whose leaf nodes can store up to 50 records. What are the
minimum and maximum number of records that can be stored by the B+-tree
for 1, 2, 3, 4, and 5 levels?

Sec. 10.8 Projects 385

10.8 Projects

10.1 Implement a two-level linear index for variable-length records as illustrated
by Figures 10.1 and 10.2. Assume that disk blocks are 1024 bytes in length.
Records in the database file should typically range between 20 and 200 bytes,
including a 4-byte key value. Each record of the index file should store a
key value and the byte offset in the database file for the first byte of the
corresponding record. The top-level index (stored in memory) should be a
simple array storing the lowest key value on the corresponding block in the
index file.

10.2 Implement the 2-3+ tree, that is, a 2-3 tree where the internal nodes act only
as placeholders. Your 2-3+ tree should implement the dictionary interface of
Section 4.4.

10.3 Implement the dictionary ADT of Section 4.4 for a large file stored on disk
by means of the B+-tree of Section 10.5. Assume that disk blocks are
1024 bytes, and thus both leaf nodes and internal nodes are also 1024 bytes.
Records should store a 4-byte (int) key value and a 60-byte data field. Inter-
nal nodes should store key value/pointer pairs where the “pointer” is actually
the block number on disk for the child node. Both internal nodes and leaf
nodes will need room to store various information such as a count of the
records stored on that node, and a pointer to the next node on that level.
Thus, leaf nodes will store 15 records, and internal nodes will have room to
store about 120 to 125 children depending on how you implement them. Use
a buffer pool (Section 8.3) to manage access to the nodes stored on disk.

